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ABSTRACT 

As n precursor to numerical simiilntion of tropical cyclones with multilevcl vertical resolution, a linear model 
in which the thermodynamic equation is applied at two levels is considered. Eigenvalue solutions for conditional and 
unconditional heating are compared. 

1. INTRODUCTION 
Dynamical models designed for the study of tropical 

cyclones are crucially dependent on i L  parctmetrio rep- 
resentation of the large-scale heating function which is 
produced by organized systems of cumulonimbi. Models 
in which this heating; is rehted to cyclone-scale con- 
vergence in a subcloud friction layer and in which the 
vertically integrated heating function is dependent upon 
the flux of latent heat through the top of the friction layer 
have yielded promising results ’ within the framework 
of models which have been truncated in the vertical to 
the extent that the thermodynamic equation is applied 
at  only one level. Examples are [l, 7, 81. The design of 
models with greater vertical resolution has proven 
difficult. 

As has been noted by others [l, 2, 71, the vertically 
integrated heating is fairly well approximated by the 
flux of latent, heat ulnvard through the boundary layer. 
However, rather little is known about the vertical dis- 
tribution of this heating. The latter is strongly dependent 
on the cumulus-scale circulations as well as on entrain- 
ment. Different theoretical treatments of the interrictions 
of cumuli with their environments (for examples, [5, 61) 
predict subst:Lntielly different vertical variations of 
heating. With this in mind, ii number of investigators 
have concluded that tropical cyclone niodels \vith increased 
vertical resolution are not yet within rewh.  

On the other hand, we do have considerable knowledge 
concerning the structure of the tropical cyclone and its 
characteristic time variations. If we can determine vertical 
distributions of heating such that the solutions to the 
time dependent equations for the cyclone scale show 

The term, “conditional instability of the second kind,” has been suggested [l] for 
growth which results from energy imparted by this mechanism. Hereafter, this will be 
abbreviated to “CISR.” 

structures and time scales consistent with the observations, 
we will have provided useful information for the design 
of cumulus-cyclone interaction models. SyBno and 
Yamasaki’s [9] linear analysis of a system with two thermo- 
dynamic levels and unconditional heating is a valuable 
step in this direction. The primary purpose of this paper 
is to extend these results to conditiotd heating and to 
attempt a delineation of the vertical distribution of heat- 
ing necessary for the solutions to resemble tropical 
cyclones. 

9. THE LINEAR MODEL 
Figure 1 shows the vertical structure of our model. 

The thermodynamic equation is applied at levels 2 and 4. 
The equations of horizontal motion, in balanced form,’ 

and the continuity equation are applied at  levels 1, 3, 5, 
and 7. Friction is included only in the surface la.yer as 
is typical of studies of this type. 

The thermodynamic equation for a hydrostatic atmos- 
phere, linearized on a stagnant base state, takes the form: 

+ and w are, respectively, the geopotential and vertical 
motion perturbations; u is the base-state static stability 
(a= - (G/@a@p, Z=base-state specific volume, ;=base- 
state potential temperature). Q is the heating function 
per unit time and mass. R, cp, p ,  and t have their conven- 
tional meanings. With the usual finite difference approxi- 
mations. 

2 To the authors’ knowledge, Sy6no and Yamasaki [9] are the only investigators who 
have attempted a linear analysis of CISK within the framework of the primitive equa- 
tions. The mathematical difficulties involved in solving the primitive equations with 
conditional heating appear to be formidable. 
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FIGURE 1.-Vertical structure of the model. 

where Ap=300 mb. We will consider only positive static 
stability ( + O ,  (r4>O). 

For circular symmetry and balanced motion, the radial 
equations of motion, after linearization, reduce to the 
geostrophic wind law, 

(3) 

where vf is the perturbation of the tangential velocity. 
The centrifugal terms are not present due to  their non- 
linearity. The equations of tangential motion written for 
the region above the boundary layer are: 

-- jufi j=l, 3, 5. - 
at (4) 

f is the Coriolis parameter and uj is the perturbation of the 
radial wind. 

The Ekman equation for the tangential balance of 
forces in the friction layer is 

r is the tangential stress. This equation is applied to level 
7;  the friction term is approximated by 

ar 
aP 

g -= g 4 p  

and the inertial term is linearized. Thus 

(5) 

where Sp (100 mb.) is the thickness of the boundary layer. 
The stress is approximated by 

where pS is the 1000-mb. base-state density and CD is the 
drag coefficient. rg is linearized by replacing d w 8  with 
V* (a constant with dimensions of velocity) and, as is 
common in CISK analyses [l, 91, vg is replaced by a frac- 
tion of the tangential wind closest to the friction layer. 
Hence, 

Vg = lV5 (7) 
and, from equation (5), 

Equation (8 ) ,  at best, is an extremely crude approximation 
to the boundary layer dynamics. It is, however, typical 
of those used in models of this type. 

The continuity equations for levels 1, 3, 5, and 7 are 

and 

From the boundary conditions, 

and the continuity equations, we find 

Equations (loa), (lob), (ll), and (12) allow us to  intro- 
duce a Stokes stream function ($) such that 
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These relationships are used to eliminate reference to the structure of the solutions. For conditional heating, by 
radial and vertical mo'tions in equations ( l ) ,  ( 2 ) ,  ( 3 ) ,  (4), agreement, we set L=O when w 6 2 0 .  
and (8). This yields, By use of (16),  (17) ,  (18) ,  (19), (20),  (25),  and (26) and 

noting that Ap/6p=3, we have 

%+%+!%+E &=O, 
at at at 3 

where which is a closed system for VI, V3, vs, $ 2 ,  $41 $61 91, 93, 
and tp5 provided that o2 and Q4 are expressed in terms of 
the other dependent variables. 

3. THE HEATING FUNCTIONS 

The total heating in a vertical column is assumed to be 
equal to the large-scale upward flux of latent heat through 
the top of the friction layer. In  linear form, 

Q = O ,  ~ 6 2 0  (21b) 

where L is the latent heat of condensation and & is the 
base-state specific humidity a t  p6. These relationships 
express conditional heating. For unconditional heating, 

and 
RL 

2cpAp2 
e=-. 

4. SOLUTIONS FOR UNCONDITIONAL HEATING 
The solution for unconditional heating will be ex- 

amined in some detail since it serves as a direct comparison 
to Syano and Yamasaki's [9] work and since it provides 
insight to the more complex solution for conditional 
heating. For unconditional heating, 

where Hi are the amplitude constants and the eigen- 
values of p are given by (22)  

regardless of the sign of we. Heating will be limited to the Y 4 )  k4+ (2e- 2Y4- Y2)k2]- 1 

k4S2S4+2k2(S2+S4) f 3  

(34) 

layer extending from ;p l  to p5. Equations @ l a )  and (22) 
may then be approximated by p=T 

AP( Q z f  0 4 )  = - - L 0 6 q 6 *  (23) 
where 

With the definition 

(36)  f"2 -5. Y - ' - &  and by use of (23) ,  (24) ,  and (13) ,  we obtain 
'-P6Ap 

Q .- L q 6  & 
4---rAp(v+l)  ar (25)  J o ( q )  is the zero order Bessel function of the first kind, 

and k= X/D (37)  
(26) 

where X(z2 .4048)  is the first zero of Jo(q) and 

o<r<D The parameter v ,  which measures the ratio of upper 
tropospheric to lower tropospheric heating, is extremely 
important in the determination of the growth rate and is the domain in which the heating functions are positive. 
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large and very small scales with intermediate growth) will 
be referred to as Type B. The necessary and sufficient 
conditions for Type B spectra are: 

</qe (m.t.s units ) 

FIGURE 2.-Critical values of Y calculated from (39). Y measures the 
ratio of upper to lower tropospheric heating. When Y exceeds the 
critical value, relatively small-scale disturbances are damped. 

Equation (34) is similar to (5.7) of Sy6no and Yama- 
saki’s [9] paper. The denominator of (34) is positive 
for uz>O, u4>0. Stability or instability is, therefore, 
determined by the sign of the numerator. It is clear that 
disturbances of very large scale (small k) are damped. 
When 

and 

‘-4, 

v<y4 (39) 

the coefficient of k4 in the numerator of (34) is positive. 
Under these circumstances, therefore, disturbances of 
sufficiently small scale will grow and larger scale systems 
will be damped. This type of spectrum (hereafter, “Type 
A”) is similar to  that found from models with only on0 
thermodynamic equation (see [l, 71). Critical values of 
v, calculated from (39), are shown by figure 2. 

When v exceeds this critical value, the coefficient of k4 
in the numerator of (34) is negative and, hence, disturb- 
ances of both sufficiently small and sufficiently large scale 
are damped. When this is the case, growth may occur 
over an intermediate range of scales provided that 
the coefficient of k2 is positive and that the numerator of 
(34), when considered as a quadratic for k2, has a nonneg- 
ative radical. A spectrum with this shape (decay a t  very 

e -Y4  
V>-, 

y 4  

which renders the coefficient of k4 in the numerator of (34) 
negative, 

O<Y2<2 (E-YJ (42) 

which insures that the coefficient of k2 is positive, and 

[2 (E--Y4) - Y212+4Yz [-& -Y,]20 (43) 

which insures that the numerator of (34) will not have a 
negative radical. 

Although not mentioned by Sy8no and Yamasaki [9], 
Type B spectra are implicit in their equation (5.7). How- 
ever, as will be shown below, growth rates for Type B 
spectra are very small and this mode of growth appears 
to have no real importance. 

Sample spectra are shown by figure 3.3 Figure 3a shows 
results for static stabilities and boundary layer humidity 
close to Jordan’s [4] mean hurricane season sounding. For 
this case, instability occurs only for 5 1 and the spectra 
are always of Type A. The decrease of growth rate with 
increasing v, as illustrated by the figure, was also found 
by Sy6no and Yamasaki [9] and is an extremely important 
result. We note that the growth rates with v-values of 
0.6 and 0.8 are extremely small (corresponding to e-folding 
times of about 11 and 28 days, respectively). With v equal 
to zero (all heating in the lower troposphere) the e-folding 
time is about 3 days. One might than conclude realistic 
solutions could be obtained by use of a v somewhere 
between 0.6 and 0.0. 

However, as pointed out in section 1, the model must 
also reproduce the correct structure of tropical cyclones. 
The observed thermal structure is such that greatest 
warmth is found in the upper troposphere. Radial tem- 
perature gradients in the low troposphere are usually 
weak and little vertical shear of the tangential wind is 
observed a t  low levels. 

Although the derivation will not be reproduced here, 
it may be shown from an examination of the amplitude 
constants (HI, H3, and H5) that a necessary condition for 
cyclonic flow to extend into the middle troposphere is 

17 
1 2  

V>--* 
2 Y4 

(44 1 

When (44) is not satisfied, the solutions give so much 
warmth in the lower troposphere that the low level 

3 For all numerical results presented: f=5X10-5 sec. -1 ; C~=2.5X10-3 , Z=O.8, V*=5 
m. sec.-1 
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cyclonic flow gives wa.y to anticyclonic flow a t  450 mb. 
For the static stabilities and humidity used to construct 
figure 3a, (44) is satkfied for values of v in excess of 
about 0.83. However, as mentioned above, the growth 
rates for such values of v are much too small to be realistic. 
We must, therefore, conclude that there are no satis- 
factory values of v for the mean sounding. 
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FIGURE 3.-Growth rates for unconditional heating. Curves are 
labeled with appropriate values of Y .  (a) u2=5.0 m.t.s., a4=3.0 
m.t.s., &=.015, (b) u2=5.0 ru.t.s., .~4=3.0 m.t.s., &=0.020. 

To construct figure 3b, we have used the same static 
stabilities but the boundary layer humidity is close to its 
saturation value. With v=O.8 the e-folding time is 
about 5 days. As noted in the previous paragraph, v of 
about 0.83 gives zero tangential velocity in the middle 
troposphere. To obtain a more realistic circulation, it 
turns out that v must be increased to a t  least 1. However, 
growth rates are then too small. There seems to be no 
reasonable compromise within the framework of the cli- 
matological static stabilities. We will have more to  say 
on this matter in the next section which deals with con- 
ditional heating. 

For completeness, figure 3b shows the spectrum with 
v=2. This is a Type B spectrum. The e-folding time for 
the maximum growth rate is about 37 days, thus verifying 
the statement made earlier concerning the insignificance 
of this mode of growth. 

5. SOLUTIONS FOR CONDITIONAL HEATING 
Equations (25) and (26) are now valid only for O<r<D. 

At greater radii, Q2=Q4=0. Separate solutions are ob- 
tained for the heated and nonheated regions. At r=D,  
these solutions must mesh through the dynamic and 
kinematic boundary conditions. 

FIGURE 4.-Growth rates (conditional heating) in the limiting case 
as the radius of the heated region approaches zero. Isopleths are 
labeled in units of 10-7 sec.-l 
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FIGURE 5.-Eige&alues for Y in the limiting case as the radius of 
the heated region approaches zero. 

In the heated region, (33) gives the dependent variables 
provided that (34) holds. (Equation (37) does not hold for 
conditional heating.) For r> D, we suppress the heating 
terms in (28) and (29) and proceed as before. The solutions 
which permit growth and remain finite as r becomes 
large are: 

A 

+j=e*’HjKo(mr), j=1, 3, 5 (45) 
provided that 

K ~ ( T )  is the zero order modified Bessel function of the 
second kind ([3], p. 155). At r=D,  continuity of the level 
5 geopotential and radial wind require 

(47) 

which is similar to the relationship found in models with 
less vertical resolution [ l ,  71. However, the further require- 
ment that ul, u3, u7, +, and +3 also be continuous at  r=  D 
leads to the added restriction 
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FIGURE 6.-Sample growth rate curves for conditional heating 
uaZ5.0 m.t.s., u4=3.0 m.t.s. Curves are labeled with the appro- 
priate values of &. 
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FIGURE 7.-Eigenvalues of Y as a function of D; aa=5.0 m.t.s., u4 
= 3.0 m.t.s. Curves are labeled with the appropriate values of i6. 

If v and D are both specified, the problem is over- 
determined since (34), (46), (47), and (48) must all be 
satisfied; but the only parameters u t  our disposal are 
m, k ,  and p. We are, therefore, not free to specify both 
v and D. Once D has been set, .V is an eigenvalue of the 
problem and (34), (46), (47), and (48) must be solved 
simultaneously for k, m,  V ,  and p. 

This restriction on v is surprising and appears to  have 
more mathematical than physical significance. It appears 
to stem entirely from the requirement that the time 
dependency of the solutions be the same in the heated 
and nonheated regions. Unfortunately, closed solutions 
without this restraint appear to be out of reach. Our 
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FIGURE 8.-Temperature amplitudes in the heated region as a 
function of D; uz=5.0 m.t.s., u4=3.0 m.t.s., &=0.019 (HI arbi- 
trarily set to 100 m.2 sec.3). 
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results from numerical experiments with the nonlinear 
equations (to be reported on a t  a later date) indicate 
that growth may take place for values of v other than 
the eigenvalue provided that the critical value given by 
(39) is not exceeded. Despite this limitation, the solution 
for conditional heating does allow us to delineate the 
values of v and static stability needed for the development 
of systems resembling tropical cycIones in a fairly direct 
manner. 

0 IO0 200 300 400 

q/q6 ( m.t.s.) 

FIGURE 10.-Instability is limited to  regions A and B .  In  the 
limiting case as D approaches zero, the midtropospheric tangential 
velocity is anticyclonic in region A and cyclonic in region B.  

4 d  

- 1  CONDITIONAL HEATING \ 
= 5 m.t.s. < = 2 rn.t.s. 

q e =  0.020 $ 6  
u) 

By use of (34), (46), and (48) it may be shown th.at 

4 4  8-  Y4) 
yz< 2c-Y4 (49) 
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is a necessary condition for growth. The algebraic manipu- 
lations required to  derive (49) are rather tedious and will 
not be reproduced here. 

It may further be shown that only Type A spectra 
occur for conditional heating. This is verified by figures 
4 and 5 which show growth rates and eigenvalues for Y 

in the limiting cases as D approaches zero.4 These are 
obtained by simultaneous solution of (34), (46), and (48) 
in the limit as k becomes indefinitely large. The eigen- 

4 In this case, k approaches infinity but the product kD approaches zero 
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FIGURE 14.-Eigenvalues of Y as a function of D; o2=5.0 m.t.s., 
u , = ~ . o  m.t.s., &=0.020. 

values for v (fig. 5) are, of course, less than the critical 
values given by (39). 

Figure 6 shows sample growth rate curves. The static 
stabilities are appropriate to  Jordan's [4] mean sounding. 
The q6=0.013 curve represents mean humidity con- 
ditions; &=0.019 represents saturated conditions. In 
the former case, growth is very slow and the e-folding 
time is about 37 days. With a saturated boundary layer, 
growth proceeds more rapidly and the e-folding time is 
about 6 days which is fairly realistic. 

Figure 7 shows the eigenvalues of v while figures 8 and 
9 provide information concerning the structure of the 
systems @6=0.019 case). The temperature amplitudes 
are obtained hydrostatically from the equations 

Tz= (Hi -H3)/R (50) 

T,= 2 (Ha-HJIR (51) 

where R is the gas constant for air. Neither the thermal 
structure (fig. 8) nor the wind field (fig. 9) resembles that of 
tropical cyclones. The eigenvalues for Y (fig. 7) fall well 
below the values needed to obtain a realistic thermal 
structure (as given by (44)). 

Further analysis shows that eigenvalues of v necessary 
for realistic structure are limited to Domain A of figure 
10 and occur only for smaller values of D. If we retain 
i&=0.019, uz=5 m.t.s. but use u4=2 m.t.s. (33-percent 
reduction from the mean) we obtain the solution shown by 
figures 11, 12, 13, and 14. With the exception of the 
overly vigorous upper tropospheric anticyclonic motion, 
structure and growth rate are fairly realistic. In real 
tropical cyclones, nonlinear vertical transport of cyclonic 
angular momentum appears to  play a significant role 
in the control of the upper tropospheric circulation. 
Linear models will then always tend to overestimate the 
anticyclonic character of the upper troposphere. 
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7. SUMMARY AND CONCLUSIONS 

When the thermodynamic equation is applied a t  two 
levels, eigenvalue analysis of the CISK mechanism leads 
to somewhat diff eren t conclusions depending upon 
whether conditional or unconditional heating is treated. 
For unconditional heating, the ratio of upper to lower 
tropospheric heating (v) is arbitrary. Its value plays a 
crucial role in determining: 1) whether or not disturbances 
can grow, 2) the shape of the growth rate spectrum? and 
3) the structure of growing disturbances. 

For given conditions of static stability and humidity, 
the smaller values of v yield spectra (similar to that 
found in models with only one thermodynamic level) in 
which all disturbances smaller than a critical scale are 
unstable (Type A). Under certain conditions of humidity 
and static stability, a second spectral form may be found 
for larger values of v. In  this case (Type B), growth 
occurs in an intermediate range of scale; the smallest 
and largest scales are damped. The Type B spectra have 
rather small growth rates and appear to be of no great 
significance. If the static stabilities are those of the mean 
hurricane season sounding? it is not possible to find a 
value of v which provides a reasonable compromise be- 
tween growth rate and structure. The larger values of 
v yield realistic thermal structures but the growth rates 
are too small. Smaller values of v give realistic growth 
rates but a structure in which warmth is concentrated 
in the lower troposphere to the extent that the low level 
cyclonic flow decays rapidly with height and anticyclonic 
flow is present in the inidtroposphere. 

A surprising aspect of the solution for conditional 
heating is the result that v is an eigenvalue and not 
arbitrary. This appears to have more mathematical than 
physical significance since initial value formulations may 
yield growth with values of v other than the eigenvalue 
(provided that v does not exceed the critical value for 
Type-A growth found in the solution for unconditional 
heating). 

For conditional heating, only Type-A spectra are found. 
The solutions show that Jordan’s mean hurricane season 
sounding can support only very slow growth; e-folding 
times are on the order of 37 days. The same thermal 
structure but with the boundary layer humidity increased 
to saturation gives e-folding times of 5 to 6 days. However, 
the resulting disturbances show thermal structures which 
are dissimilar to those of observed tropical cyclones. 
Further analysis shows that the solution is capable of 

yielding more realistic disturbances if the lower tropo- 
spheric static stability is about y3 less than that of the 
mean sounding. Under these conditions, reasonable 
growth rates and thermal structures are obtained pro- 
vided that beat is distributed in the vertical such that 
the ratio of upper to lower tropospheric heating is about 
1.25. It would, therefore, seem that theories of cumulus- 
cyclone interaction must provide a similar vertical 
distribution of heating if the life cycle of the tropical 
cyclone is to be realistically simulated. 
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